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EFFECT ON SIXFAACE THERMAL PROPWTIES OF CALIBRATED 

EXPOSURE TO MICR0"EOROID ENVIRONMENT 

by Herman Mark, Ralph D. Sommers, and Michael J. Mirtich 

Lewis Research Center 

ABSTRACT 

An accurate procedure f o r  reproducing the exposure of metal surfaces t o  

impaction by micron-size pa r t i c l e s  at hy-pervelocit.ies has been employed t o  

expose t a rge t s  of several  ma5erials. After degradation of surface op t i ca l  

properties i n  varying amounts due t o  such exposure, these t a rge t s  were mounted 

on a simulated space vehicle tha t  w a s  then placed i n  a s o l s - s p a c e - e n v i r o n n t  

chamber. I n  t h i s  chamber the  pressure was maintahed below IUD Hg, the  

black radiat ion sink of space was provided at  4.2O K, and the  samples w e r e  

placed i n  a beam-simulating solar radiation. 

maifitained a t  1 solar  constant, while reproducing reasonably w e l l  t h e  spec t r a l  

d i s t r ibu t ion  of solar radiat ion i n  space. Values of normal solar absorptance, 

t o t a l  hemispheric emittance, and equilibrium temperature fo r  various materials 

w e r e  thus obtained as a function of exposure t o  simulated micrometeoroid impac- 

t ion .  Comparison of these data with actual  s a t e l l i t e  s m p l e  temperature 

h i s to r i e s  w i l l  allow an a l te rna te  method of estimating micrometeoroid f l u x  i n  

space, without the  l imitat ions of nomentum cal ibrated microphone data,  o r  the  

The in tens i ty  of the beam was 

need f o r  hard-to-interpret penetration f l u x  measwements. 

IlWFtODlfCiTION 

A s  par t  of an  overal l  effort, t o  determine the degradation of material sur- 

face propert ies  while these swfaces  are exposed t o  the micrometeoroid environ- 

ment i n  Earth orbit., a program is i n  progress at the  Lewis  Research Center t o  

simulate t h i s  enviromezt . Sirxe labo=.atory acceleration of p ro jec t i l e s  t o  

X-5 2056 
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meteoric speeds, while maintaining the  p ro jec t i l e  i n t ac t ,  has not been success- 

f u l l y  accomplished as yet ,  it was the  aim of t h i s  program t o  produce quantita- 

t i v e l y  the  surface damage caused by co l l i s ion  with such pa r t i c l e s  over a range 

of the highest pa r t i c l e  speeds presently a t ta inable .  From the  surface damage 

a t  these speeds it was expected t h a t  extrapolation t o  the  damage caused by 

microparticles impacting at meteoric speeds could be made, and thus remove the  

need fo r  subjecting every material *hose surface properties are of i n t e re s t  t o  

ac tua l  space f l i g h t  exposure. 

A procedure f o r  simulating the  phenomena associated with micrometeoroid 

exposure has been developed and i s  described i n  reference 1. This procedure 

has made possible the quantitative exposure of various surfaces t o  impact by 

clouds of high-speed micron-size par t ic les .  This has subsequently allowed 

correlation of t he  change i n  opt ica l  properties ( infrared reflectance or e m i t -  

tance) of various materials with the  laboratory exposure, and thereby suggested 

the  program tha t  i s  the  subject of t he  present paper. 

This program consists of measuring the  "in-space" temperature of thermally 

isolated disks tha t  have been exposed t o  increasing amounts of simulated micro- 

meteoroid environment. Transient as w e l l  as equilibrium measurements are in- 

cluded. 

simulation chamber i n  which the  "in-space" thermal environment f o r  t he  disks has 

been accurately reproduced. I n  t h i s  way a r e l a t ion  i s  obtained between the  t e m -  

perature h is tor ies  of the disks and the  amount of micrometeoroid exposure. A t  

The "space1' i s  the  working section of a large solar space-environment- 

the  same time an accurate picture  of the  surface damage associated with t h i s  

exposure and hence with the  temperatures is  available,  since the  disks are i n  

hand and can be examined by the appropriate op t ica l  instruments. 

It would be most in te res t ing  t o  know the  ac tua l  temperature his tory of the  

disk i n  space fo r  comparison. Such a temperature his tory,  together with t h e  
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temperature-exposure r e l a t ion  f o r  a similar disk obtained i n  the present experi- 

ment on t h e  ground, const i tutes  another method f o r  estimating the exposure t o  

micrometeoroid flux. This flux estimate is  based on the  change i n  opt ica l  

propert ies  of the exposed surfaces and the associated change i n  the tempraturea 

of t he  disks,  precalibrated by the laboratory exposure and space-simulator- 

temperature study herein described. 

temperature "calibration" has been made f o r  three materials, and these are pre- 

sented along with a complete before-and-after-exposure opt ica l  description of 

the surfaces. Although a cornpaxison with an  ac tua l  space experiment is not made 

here, the  expected temperature behavior of the "exposed" surfaces i n  space, and 

possible explanations and consequences of t h i s  behavior are presented. 

In t he  present study t h i s  exposure- 

SlMULATIOB OF MICROMET&OROID EXFOsuKg 

I n  s p i t e  of the f a c t  that maxhum attainable speeds t o  which par t ic lee  

could be accelerated i n t a c t  were only a f r a c t i o n  of the  speeds of encounter 

with the  pa r t i c l e s  i n  &arth o rb i t ,  it was f e l t  that the phenomenon of hyper- 

ve loc i ty  impaction with micrometeoroids could best  be simulated by impaction 

with pa r t i c l e s  at attainable speeds, although other means of causing damage t o  

surfaces have been suggested. I n  order t o  obtain a ca l ibra t ion  of micrometeoroid 

exposure against equilibrium temperature of a thermally i so la ted  disk under space 

conditions, a means of charac te r iz ingthe  exposure on the ground and i n  space 

was needed. Both the laboratory exposure and the  change i n  surface property 

( ref lectance,  f o r  instance) due t o  the exposure are known on the  ground, but it. 

is c l ea r  that the change i n  surface property could have been caused i n  a number 

of ways, and thus,  not having a unique t i e  t o  the enviroment t h a t  caused it, 

fails  t o  characterize t h i s  environment as well as the  exposure i tself .  

fore ,  t he  question remains a s  t o  the  actual physical  quantity t o  use f o r  mea- 

n u  I-6 u A A c  C A ~ ~ ~ U C .  Sliice 5 ii-cjiiiber ~ l "  ~ . ~ ~ = i t e r  iuvetsiigtriiuns, experimenitri as 

There- 

*.. - 4 - m  +l..r ----- ~ ---- 



4 

w e l l  as theoret ical ,  have indicated t h a t  t he  volume of t he  c ra te rs  formed i n  

t a rge t s  as a r e su l t  of impaction with high-speed pro jec t i les  i s  proportional t o  

the  k ine t ic  energy of the  pro jec t i les ,  the sm of the  k ine t ic  energies of the  

par t ic les  s t r iking the  surface up t o  any time was  chosen as the  physical quantity 

characterizing the  exposure. The analysis t h a t  follows fpom t h i s  is presented 

i n  references 1 and 2 and provides a useful r e l a t ion  connecting t h e  surface 

reflectance with t h e  exposure characterized by the  k ine t ic  energy of t h e  par- 
- 

titles impacting. From reference 1, the  expression f o r  reflectance pa of a 

m e t a l  surface of area A. exposed t o  impaction by par t ic les  having a t o t a l  

k ine t ic  energy e i n  joules i s  

where 

A l l  symbols are defined i n  appendix A. 

Equations (1) and ( 2 )  allow an ana ly t ica l  extrapolation from t h e  meaaured 

t o t a l  energy required fo r  a given laboratory-caused surface opt ica l  property 

change, t o  t h e  t o t a l  energy required i n  space f o r  the  same surface opt ica l  

property change. This extrapolation requires evaluating K1 f o r  space and can 

be done i f  the k ine t ic  energy of t he  pa r t i c l e  i n  space causing m o s t  of the sur- 

face damage can be reasonably e s t h a t e d  (see appendix B) . 
The experimental procedure f o r  producing the labosatory damage t o  the SUT- 

faces is described i n  d e t a i l  i n  reference 1, but, br ief ly ,  quantitative exposures 

were obtained i n  the  following way. 

Polished surfaces of s o f t  aluminum, s ta in less  steel, and s ta in less  st"ee1 

coated with 1900 angstroms of aluminum were bombarded by clouds of Sic pa r t i c l e s  
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having an average diameter of 6 microns and a speed of 8500 feet per second. 

The pa r t i c l e s  were accelerated by the  aerodynamic drag of the  short  duration 

flows i n  a shock tube and the  resul tant  k ine t ic  energies 

IT 

i=l 

were obtained from str ip-f i lm camera measurements f o r  pa r t i c l e  speed, and micro- 

balance col lect ion measurements t o  determine the  t o t a l  number of pa r t i c l e s  

s t r i k i n g  the given area (see ref, 1). The measurement of speed and number of 

p a r t i c l e s  s t r ik ing  a p la te  were  qui te  accurately reproducible, and the labora- 

t o r y  exposures were measured and are presented i n  joules.  I n  each series (i-e., 

f o r  each t a rge t  material) the  disks were nominally exposed t o  0, 1, 2, 4, and 

6 joules. This range of exposme6 represents changes i n  t h e  ref lectance of a 

s ingle  disk from i ts  o r ig ina l  value near 1.0 t o  about 0.5. 

Thus, there  is the  poss ib i l i t y  of quant i ta t ively exposing surfaces i n  t h e  

laboratory t o  impaction by high-speed pa r t i c l e s  (energy measured i n  joules) ,  

measuring the  damage (change i n  surface op t i ca l  propert ies)  with a spectrometer 

and then, from analy t ica l  considerations using equations (1) and (2), calculat ing 

the equivalent space exposure (again i n  joules)  required t o  produce t h e  sane 

surface damage. Having t h e  space exposure-surface damage re la t ion ,  plus the  

surface damage-equilibrium temperature r e l a t i o n  obtained i n  the  shulated space 

environment (described i n  a later section),  allows the simple monitoring of the  

temperature of a disk i n  space t o  determine not only the  surface damage but a l so  

the ac tua l  micrometeoroid exposure causing the d m g e  as a function of time. 

This fo~ lows ,  of course, only if it i s  assumed t h a t  only the  micrometeoroid ex- 

posure i s  causing the  swface  damage. This is  probably t rue ,  i n  space, f o r  many 

of the important materials whose surfaces w i l l  be exposed. It is  a l so  necessary 
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t o  assume that  normal impingement is suff ic ient  t o  simulate impingement from a l l  

directions.  This is shown t o  be so  and is discussed i n  reference 3. 

DE'llgRMINATION OF SURFACE OPTICAL PROPEETIE8 

The disks of the present study chosen f o r  their  good r e f l ec t ive  properties 

were s ta in less  steel ,  aluminum, and a s ta in less -s tee l  substrate  w i t h  a vacum- 

deposited coating of aluminum 1900 angstroms thick.  

thick f o r  the surface t o  exhibit  t he  opt ica l  properties of aluminum as long as 

the coating remains undamaged. 

on the l i f e  of a 1900 angstroms aluminum coating on stainless steel ,  f o r ,  pre- 

sumably, when the coating has been eroded away, the substrate surface should 

again exhibit the properties of the exposed sqainless steel .  

This coating is su f f i c i en t ly  

Thus, we have b u i l t  in to  the experiment a check 

The disks were chosen 15/16-inch i n  diameter and 1/64- t o  1/16-inch thick,  

essent ia l ly  because these are appropriate dimensions f o r  a sample i n  the heated- 

cavi ty  spectrometer system f o r  making reflectance measurements. 

a Perkin-Elmer 1 3 U  spectrometer compares, i n  a given wavelength band, t h e  radia- 

t i o n  from a blackbody cavity at about 600' C with t h e  t o t a l  radiat ion re f lec ted  

from a water-cooled smple  i n  the  same wavelength band. 

good i n  the infrared region but is  not sa t i s fac tory  at  shorter wavelengths due 

t o  insuff ic ient  radiat ion from the heated cavi ty  below a wavelength of about 

1 micron. 

a function of wavelength and are plot ted as a function of wavelength and are 

presented for a representative sample of each material i n  figure 1 both before 

and after exposure t o  impaction w i t h  approximately 1 joule of 6-micron-diameter 

Sic  par t ic les  t ravel ing a t  8500 feet per second. 

spec t ra l  data a re  a l so  presented. 

the s ingle  value tha t  w i l l  r e f l e c t  the same amount of energy ar r iv ing  from a 

420' K ( 756' R) blackbody source as does the sample, that is ,  the average 

I n  t h i s  system 

This technique is quite  

The in tens i ty  r a t i o s  obtained i n  t h i s  way (Irefl/Im) are plot ted as 

The average values of these 

The average reflectance i s  defined here as 
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ref lectance is  given by 

where 4-a %efl/Im' 
The normal so- absorptance was determined from measurements made i n  the  

space environment simulator during t ransient  heating of the exposed disks momted 

i n  a simulated space vehicle (see appendix C ) .  The t o t a l  hemispheric emittance 

of the disks was obtained during t ransient  cooling (see a p p e d i x  C), Compari- 

sons are made later between equilibrium temperatures calculated from the  values 

of thermal op t i ca l  properties obtained by these t r ans i en t  experiments and the 

ac tua l  equilibrium temperatures attained by the disks  i n  the solar s imuhtor .  

Infrared ref lectances are a l so  compared w i t h  thermally obtained disk emittances 

a B  a fur ther  check. The space chamber t h e m 1  experiment w i l l  be described i n  

the next section. - 
HISTORIES O F  EXPOSED DISKS IN 

Space Environment F a c i l i t y  

I n  order t o  study problems induced by the environment that a vehicle and 

its components w i l l  see i n  space, several  f a c i l i t i e s  have been designed and 

b u i l t  a t  the Lewis Research Center t o  reproduce t h i s  environment. 

environment-simulation f a c i l i t y  employed i n  the equilibrium temperature experi- 

The space- 

ment of the present paper is t h e  ultimate f a c i l i t y  available at  the  present t h e  

for simulating the thermal environment of space and a cutaway drawing i s  pre- 

sented i n  figure 2. I n  the working section of the inner "space" chamber, which 
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the  space environment are reproduced simultaneously, and as accurately as pos- 

I s ib l e .  The f i r s t  of these is the  extremely low pressure of the gases i n  space, 

estimated t o  IX about 10-14 mm Hg ( t o  reproduce pa r t i c l e  fluxes). 

pressure is obtained by using the enormous gas removal capabi l i t i es  of the  

 his low 

en t i r e  chamber wall kept at liquid-helium temperatures by jacketing. 

character is t ics  that are provided simultaneously by jacketing the  inner space 

chamber walls with l iqu id  helium are  the  extremely low background temperature 

of space at  about 4' K (thus removing any superfluous rad ia t ion  source) as well 

as the  very nearly perfect absorption capabi l i ty  of the space background f o r  

gases and radiation energy t h a t  a blackened w a l l  at  t h i s  temperature exhibi ts ,  

The most important energy source i n  solar space is, of course, the  Sun, and i n  

t h i s  f a c i l i t y  the rad ia t ion  a r r iv ing  from the  Sun, a t  Earth distance from the  

Sun (but outside Earth atmosphere) is  provided a t  t he  proper intensi ty ,  uni- 

formity, and collimation angle, as well as with a spec t ra l  energy d i s t r ibu t ion  

Two other 

quite l i k e  tha t  of the Sun over the  wavelength range f r o m  3500 angstrom t o  

about 2.5 microns. 

To produce the  l iqu id  helium necessary f o r  jacketing the  inner 6-foot- 

diameter chamber, a helium liquefaction p h n t  is i n  operation that has a ca- 

paci ty  of more than 200 l i ters of l iqu id  helium an hour. 

i n  two 7000-liter liquid-helium Dewars from which it is dram during the experl- 

ment. 

when so operated provides suf f ic ien t  gaseous he l iumto  keep the  inner space 

chamber wa l l  at 18' K, with a 1000-watt heat load i n  the  chamber, 

suf f ic ien t  t o  remove the  energy introduced in to  the  chamber' by the  solar- 

rad ia t ion  simulator, plus some addi t ional  heat loads from the  t e s t  vehicle. 

This l iqu id  is  stored 

The liquefaction system can a l so  be operated i n  a re f r igera t ion  mode and 

This is  

The solar-radiation simulator has been described i n  d e t a i l  i n  reference 4. 

It consists of  a cored-carbon-electrode high-current a r c  with the  focusing and 

~~ 
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collimating opt ics  required t o  form the necessary beam, 

in to  an evacuated collimating-mirror-support tank through a sma l l  window, 

then passes up toward the collimating mirror and again down through a quartz 

window i n t o  the  space chamber and on t o  the test plane, as shown i n  figure 2. 

The in t ens i ty  of the beam is monitored during the  experiment by s i l i c o n  

The beam is brought 

It 

solar c e l l s  that  have been cal ibrated against t o t a l  i n t ens i ty  m e t e r s  before the 

experiment and then mounted on a r i n g  surrounding the  test vehicle, 

perature measurements on the test vehicle, copper-constantan thermocouples are 

For t e m -  

used, while gold-cobalt-copper thermocouples are used whenever temperatures 

below 80° K are encountered (as  on the chamber w a l l ) .  

me made by means of tubulated cold-cathode ionization gages located at various 

s t a t ions  i n  t h e  chamber and pointed i n  a variety of direct ions t o  permit an 

average of the d i rec t iona l  e f fec t .  

Pressure measurements 

Space-Cbmber-Temperature Experiment 

Five or ig ina l ly  ident,ical 15/16-inch-diameter polishea disks were selectea 

f o r  a given material and each disk was then subjected t o  a given amount of labo- 

r a to ry  exposure, the exposure increasing from disk t o  disk. 

sure f o r  the disks was suf f ic ien t  t o  represent a change i n  a s ingle  disk From 

i ts  o r ig ina l  high ref lectance near 1 at zero exposwe, t o  a ref lectance of about 

0.5 at  the xnaximum exposure. 

'Ifhe range of expo- 

Although it is not ce r t a in  how much t h e  in space 

such degradation requires,  the exposure i n  joules was accurately measured i n  the 

laboratory and the surface op t i ca l  properties of each exposed disk was accurately 

determined by a hohlraum-spectrometer measurement and recorded. The nominal 

amount of exposure f o r  the  f i v e  disks in the present experbent  was 0, 1, 2, 4, 

and 6 joules,  respectively. 

disks of t h e  materials mentioned ea r l i e r ,  

This schedule was adhered t o  f o r  three series of 

For the aluminum disk,  the last 

emsure increased ts 25 j cn les ts m a n  UC.L +b- v u . ~  -pa--+ CII~LU V I  -P n i l U 1 U L b t :  - ~ z - r r - n  eAPUBUL-e. 

4 
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Each series of disks (a  given disk material) was then mounted on a simulated 

vehicle that had been so designed as t o  minimize the  heat t ransfer  between the  

vehicle and the disks mounted on it ( f ig .  3). This was accomplished by mounting 

the  disks on nonconducting p l a s t i c  stems and shielding the  back of t he  disks with 

highly re f lec t ing  cups, thus allowing a heat balance f o r  the  disks only involving 

received and emitted radiat ion from the  front  exposed s ide of t he  disk and a 

minimum loss  from the  unexposed side ( 3 ~ 1 0 ' ~ ~  Btu/(hr) (OR4) ) . The simulated 

vehicle was BO mounted i n  the  space-environment tank that the  front  faces of t h e  

disks received s o l a r  radiat ion f a l l i n g  d i r ec t ly  on them i n  a direct ion normal to 

t h e i r  surface. This f ront  surface of the  disk could a l s o  see the  cold sink of 

space over almost the en t i r e  2n so l id  angle (except f o r  the Su) . 
disk could arrive a t  t h e  equilibrium temperature based on the  heat balance be- 

tween the  normal energy ( s o l a r  radiat ion)  absorbed and the  t o t a l  hemispheric 

energy emitted by the  ftront face (plus t h e  energy l o s s  t o  the  supporting vehicle,  

see appendix C ) .  The equilibTium temperatures were measured f o r  each disk by 

a copper-constantan thermocouple embedded i n  t h e  disk one-half t he  radius out 

from t h e  mounting pin at  t h e  center. The equilibrium temperature of t he  disk 

was determined by approaching equilibrium conditions from above and below the  

equilibrium temperature. The radiat ion in t ens i t i e s  welpe monitored during the  

experiment by s i x  s i l i con  solar  c e l l s  previously cal ibrated against  a Schwarz 

t o t a l  radiat ion in tens i ty  meter. 

temperature fo r  a l l  the disks is the  result of reproducible changes i n  surface 

op t i ca l  properties caused by cal ibrated exposure t,o high-speed micron-size- 

pastrcle  impaction. 

TPansient temperatures w e r e  measured s imi la r ly  but, were  determined dwing  

heating and cooling of the  disks fo r  the purpose of determining asN and em 

by an essent ia l ly  independent experiment (independent from the  equilibrium 

Thus, t he  

The resu l tan t  var ia t ion  of the  equilibrium 

~ . 
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experiment). 

s ignaled time in te rva ls ,  and the method of appendix C was employed f o r  calcu- 

l a t i n g  these values of thermal opt ica l  properties.  

Automatic data  recording equipment made readings at appropriately 

RESULTS 

SimuLated -sure and Surface Damage 

Reflectances f o r  a l l  the disks were obtained both before and after expo- 

sure, and spec t r a l  reflectance data of the type presented i n  figure 1 were  cal-  

culated f r o m  equation (4) to obtain average values weighted f o r  t he  energy dis-  

t r i bu t ion  corresponding t o  a 420° K (756O R )  blackbody. 

sented a l l  the  average reflectance r a t io s  f o r  stainless steel, aluminum, and 

alminum on stainless-steel substrate  samples, p lo t ted  against  t he  t o t a l  energy 

of laboratory exposure. 

required space exposure on two additional abscissas (see appendix B). The first 

is fo r  a space p a r t i c l e  of 3 x l O ' l l  gram or  a mass of one-tenth of t he  laboratory 

pa r t i c l e ,  and a speed of 34,000 feet per second (compared with 8500 f%/sec for 

t he  laboratory speed), 

In figure 4 are pre- 

For equal damage i n  space, we have a l s o  presented the 

The second extra abscissa is a l so  f o r  a 3xlO'll gram 

p a r t i c l e  but at 85,000 feet per second. In t he  former case 

an exposure of esp = 1.17 EL. In the latter case, eSp = 

crease .In exposure a t  space conditions t o  obtain equivalent 

the negative one-third exponential dependency on t h e  s ingle  

1 2 

there is required 

2.15%. This in- 

damage is due t o  

p a r t i c l e  k lne t ic  

energy of the  K1 i n  equations (1) and (2) .  Thus, as t he  s ing le  p a r t i c l e  

k ine t ic  energy increases, Kl decreases (eq. ( 2 ) ) ,  and the  surface damage at  a 

given t o t a l  energy of exposure is reduced (i.e., the ref lectance does not f a l l  

as rap id ly  with t o t a l  exposure). 

The data of figure 4 indicate  that the reduction i n  infrared ref lectance 

r a t i o  of aluminum is somewhat greater a t  any exposure than is  that of stainless 

steel. %-,e r e f l c : z t ~ z e  c;f to th ,  h ~ ~ e - i ~ r ,  fa l l  &ter o&y 7.5 joules 03 =DO- 
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ra tory  exposure t o  less than 60 percent Of t h e i r  o r ig ina l  value. 

r a t i o  of the disk of s t a in l e s s  s t e e l  coated with 1900 angstroms of aluminum 

follows the  reflectance r a t i o  of aluminum u n t i l  t h e  exposures are somewhat in- 

creased, and then the  values d r a w  away f romthe  aluminum and approach those of 

t h e  substrate s ta in less  steel as the  aluminum coating i s  being eroded away. To 

obtain these curves, the values f o r  

n inf in i te"  exposure, were  determined but me not shown here. 

aluminum (obtained a t  25 joules exposure) was 0.3055. 

FmEi P Oo350 (obtained a t  30 joules exposure). I n  addition t o  pointfng out 

t h e  redwt ion  i n  exposed surface r e f l ec t iv i ty ,  f igure 4 a l s o  suggests that the  

aluminum-coated disk should degrade I.fke aluminum at first, then af'ter some 

exposure and as the coating is  removed, resemble the degradation rate of t h e  

substrate stainless steel, Since the reflectance r a t i o  degradation rate fo r  t he  

aluminum coated surface has slowed t o  t h a t  of the  s t a in l e s s  steel ,  t he  e f f ec t  

of the  aluminum coating on s t a in l e s s  steel  is t o  keep t h e  absolute ref lectance 

up throughout OUT experiment longer than that of aluminum alone, and hence f o r  

a longer t h e  than might be expected i n  space. 

The ref lectance 

s 

p,, t h e  reflectances of the  samples a t  

The value f o r  

For s t a in l e s s  steel ,  

Space -Chmber-Tempe-at we Brpcvo ime n t  

The major r e su l t s  of t he  temperature-equilibrium experiment are presented 

i n  f igure 5 and tables I and 11. 

t he  equilibrium temperature f o r  disks of three d i f fe ren t  materials Eounted on 

a simulated space vehicle and "flown" i n  a simulated space enviroment at 1.25 

solar constants. 

exposure t o  micrometeoroid environment, t h e  exposure being expressed i n  joules 

of energy of the  impacting hypervelocity par t ic les ,  

feature of these curves i s  tha t ,  i n  sp i t e  of the W g e  exposure t o  impacting 

par t ic les ,  the  resul tant  large change i n  opt ica l  properties maauped i n  the  

I n  figure 5 me przsented the  "hfstory" of 

These equilibrium temperatures a re  shown as they vary with 

Perhaps the  most important 
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laboratory and the e f f o r t s  made t o  i s o l a t e  the disk thermally from i t s  support, 

t he  t o t a l  m i a t i o n  i n  equilibrium temperature of the  disks is small but mea- 

surable. 

is  approximately 38O R o r  about 5 percent i n  absolute temperature level.  

stainless steel the  temperature is almost constant, varying only about 1 percent 

i n  absolute temperature level. 

aluminum-coated s ta in less -s tee l  disk which rose 9l0 R due t o  the  exposure or  

about 1 2  percent i n  absolute temperature level .  The equilibrium temperature 

var ia t ions as measured f o r  the disks and presented i n  figure 5 a re  a l so  pre- 

sented i n  table I f o r  comparison w i t h  t h e  equilibrium temperature c a l c u h t e d  f o r  

the disks by using values f o r  asN and em determined from the two auxiliary 

nonsteady experiments (the first Sun-on, t he  other Sun-off). 

between measured and calculated values is qui te  good. 

table are these values of %N and em measured i n  the  thermal t rans ien t  ex- 

periment f o r  each of the disks as t h e  laboratory exposure is increased, It is 

c lear  from t h i s  information that both am and em are r i s i n g  due t o  t h e  ex- 

posure. Both stainless steel and aluminum on s t a in l e s s  s t e e l  are level ing off 

t o  about t he  same temperature. This is perhaps expected, too, as t he  aluminum 

coating is worn from the  s ta inless-s teel  substrate.  The all-aluminum disk is 

wearing most rap id ly  and exhib i t s  the strongest rise i n  em, but not t h e  

highest 

ure 5. 

For the aluminum disk the  measured change i n  equilibrium tempemture 

For 

The Largest var ia t ion  with exposure WBS f o r  the 

The check obtained 

Also presented i n  this  

am, hence it approaches the lowest equilibrium temperature i n  f ig-  

For the  information presented i n  table I1 the  em of t.able I was used t o  

calculate  a f i c t i t i o u s  reflectance (1 - em), so le ly  f o r  compazison w i t h  

the average ref lectance of the disks measured by the  spectrometer method 

(pn,), These two '%eflectances" can be compared because pa i s  approximately 

e q - d  tc ph-h, uIIIc; uLcLLrc'luu ULB I S A ~ ~ L - U ~ X ~ L ,  ami %-h can be taken 

Fa, 

- 
pmn 4.h- --.L--;--t- -0 .LL1-:- - - - - - -_ .  



14 

equal t o  (1 - em) a t  the stme temperature.* 

quant i t ies  for a l l  the  disks are amazingly good considering the  difference i n  

the paths traveled t o  obtain them. 

correct,  the op t i ca l  or  thermal changes i n  surface property are cer ta in ly  vary- 

ing i n  a very similar manner w i t h  simulated exposure t o  micrometeoroid environ- 

ment. 

The comparisons of these two 

Whether or  not such a comparison is s t r i c t l y  

This s imi la r i ty  i n  the var ia t ion  of ref lectance with exposure as measured 

by either method suggests the poss ib i l i t y  of making ref lectance measurements i n  

space without a reflectometer, and a l so  suggests using these ref lectance measure- 

ments t o  determine micrometeoroid flux. This could be done by ca l ibra t ing  t h e  

change i n  temperature of a disk i n  a space-environment-simulation chamber w i t h  

the measured (elsewhere) op t i ca l  change of the surface caused by cal ibrated 

exposure of the disk t o  simulated micrometeoroid flux. 

ature of the disk f r o m  a space experiment would then give not only the change 

i n  r e f l e c t i v i t y  of the disk but a lso,  from correlat ion w i t h  the  ground experi- 

ment, the  micrometeoroid f l u x  causing t h i s  r e f l e c t i v i t y  change. 

Telemetering the temper- 

DISCUSSIOM OF RESULTS 

The reduction i n  inf'ra,red ref lectance shown spec t ra l ly  i n  f igure  1, and as 

reflectance r a t i o  Fa&, against exposure i n  figure 4 is  s a t i s f a c t o r i l y  pre- 

h * The spectrometer measures @-a by determining t h e  energy re f lec ted  f r o m  

the hemispherically-illuminated cooled sample in to  a s m a l l  beam at  16' f r o m  the  

normal t o  the surface of the sample, and comparing th i s  quantity w i t h  t he  energy 

i n  t h e  same small  so l id  angle leaving the blackbody cavi ty  (hohlraum), 

value, spec t ra l ly  averaged by equation ( 4 )  gives 

value f o r  re f lec t ion  16' from the  surface normal but can be taken approximately 

equal t o  h-h,  the hemispheric value, since the  angular reflectance values fo r  

surfaces considered here vary a t  most about 10 percent overall .  

This 

p8. This i s  s t i l l  only the 
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dictable  f o r  quantitative laboratory exposures. The resu l t ing  op t i ca l  proper- 

t ies  after exposure are quite reproducible i n  the  laboratory, and equation (1) 

with an appropriate value f o r  K1 and P, i s  amazingly good i n  predicting 

these op t i ca l  properties.  However, since these laboratory exposures are made 

~ 

I 
with pa r t i c l e s  t rave l ing  at  one-tenth t o  one-fourth the  speed estimated f o r  

micrometeoroid par t ic les ,  it remains t o  be seen, i n  the  laboratory and i n  space, 

i f  the  dependence of 

thus, by using equation (1) wi%h a space value f o r  

estimates of surface degradation ra tes  at  space conditions. The laboratory 

K1 on pa r t i c l e  k ine t ic  energy is  correct (eq. (2 ) ) ,  and 

K1, allow sizllilarly good 

ve r i f i ca t ion  of t h i s  dependence i s  now being sought a t  a 50 percent. increase i n  

exposure speed (13,000 ft./sec) i n  experiments t o  be performed. In  any case, a 

conservative estimate of appendix B indicates that the  t o t a l  exposure f o r  equal 

sur4ace damage should only increase by a f ac to r  of 2 at  space conditions. This 
,. 

indicates  t h a t  meteoroid f l u x  data uncertainties are s t i l l  the major fac tor  pre- 

venting good quant i ta t ive estimates of surface l i f e  i n  space. However, since 

our a b i l i t y  t o  predict  surface damage for  a given exposure is  good, it is sug- 

gested t h a t  t h i s  r e l a t ion  be inverted t o  determine the  exposure e o n  the  su-face 

damage, t h a t  is, monitor the r e f l e c t a x e  of a polished m e t a l  surface i n  space 

t o  determine the  exposure. 

The second part of the present experiment, i n  which the "space" temperatwes 

of exposed disks were determined as a function of surface op t i ca l  pyoperties 

r e su l t i ng  from known exposure, i s  an attempt t o  determine the  d i f f i c u l t y  of 

making "reflectance" measurements i n  space without a reflectometer. The resu14- P 

indicate t h a t  equilibrium temperatwe6 of surfaces exposed 50 micrometeoroid im- 

paction may vary only a small amount even after consider-able surface degradation, 

Hence, unfortunately, there  are  very stringent requisemellts on measuring and 

telemetering techniques fo r  obtaining any expoeiJ.re i_n_fn?z!~t i m  f r zz  szrfazc 
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equilibrium temperature measurements on a f l i g h t  experiment. 

ments can be relaxed somewhat by precal ibrat ing polished disks on the  ground t o  

determine what t h e i r  equilibrium temperature h i s to r i e s  should be (as i n  f i g .  5 ) ,  

but it s t i l l  appears t ha t  nonsteady temperatures must a l so  be used t o  c l a r i f y  

the  picture.  If t h i s  is  careful ly  done the  condition of the surface can become 

very clear  ( tables  I and 11) and a good check obtained between thermal and 

opt ica l  information. 

These require- 

CONCLUDING R.EMARKS 

A s  a resu l t  of a program i n  which polished m e t a l  surfaces are exposed t o  

impaction by high-speed micron-size pa r t i c l e s  i n  the  laboratory, a quant i ta t ive 

r e l a t ion  i s  available between exposure i n  joules and degradation of surface 

op t i ca l  properties f o r  several  materials. 

then, t o  monitor surface opt ica l  properties (reflectance,  f o r  instance) and, 

inverting t h i s  re la t ion ,  determine exposure t o  micrometeoroid flux. "Reflec- 

tance" measurements i n  f l i g h t  without a reflectometer are possible, and can be 

A f l i g h t  experiment could be used, 

made with thermal  measurements only. 

since the  equilibrium temperatures of polished metal disks i n  a typ ica l  sa te l l i te  

configuration may vary only a small mount even after considerable surface 

degradation. Hence, useful information regarding degradation may be obtainable 

only w i t h  nonsteady temperature measurements i n  f l i g h t ,  combined with pref l igh t  

ground calibration of temperature h i s to r i e s  of t he  exposed surfaces under 

simulated space conditions. 

solar  collectors i n  space could be determined i n  t h i s  manner. 

They must be made very carefully,  however, 

Information concerning reflectance degradation of 

. APPENDIX A 

SYMBOLS 

A, area of disk 

Cp specific heat of disk material 
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e 

IHR 

ISB 

K 

K1 

mp 
R 

TC 

Td 

t 

v P 

h 

'd 

'h-a 

'h-h 

CJ 

rp 

thickness of disk 

crater ing energy density,  ergs/cc 

t o t a l  hemispheric emittance 

in t ens i ty  from blackbody cavity 

spec t ra l  energy d is t r ibu t ion  of 420° K (756' R )  blackbody 

net energy exchange coefficient from disk t o  mounting cup, Btu/(hr)('R4) 

defined i n  eq. ( 2 )  

mass of impacting pa r t i c l e  

disk radius 

cup temperature 

disk temperature 

time 

pa r t i c l e  veloci ty  

normal solar absorptance 

wavelength of radiat ion,  microns 

average ref lectance 

densi ty  of disk material 

hemispheric angular reflectance 

hemispheric -hemispheric reflectance 

Stefan-Boltmann constant, 1.713~10'~ Btu/( hr) (sq f t )  ( OR4) 

in tens i ty  of incident radiat ion 
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space conditions 1 (see appendix B) 

space conditions 2 (see appendix B) 
SP1 

sp2 

A P P ~ I X  a 

SPAm E31poSURE FOR EQUAL DAMAGE 

I n  equation (1) of t h i s  paper the  surface ref lectance after exposure t o  

impaction e is wri t ten 

- - 
Pa = P i  

where 

For equal damage on a given surface, t h a t  is, constant Fa, the  quantity 

KIE must be held constant. If K1 changes with single pa r t i c i e  k ine t i c  energy 

as i n  equation (B2), E must change t o  keep 

K l f L  = KlspESP 033) 

or 

from equation (B2) 

and equation (B4)  becoms 

%P = 

Thus, f o r  t he  higher paxt ic le  k ine t ic  energies i n  space the  5o ta l  exposure 

required for the  same damage is  increased. 
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I n  the laboratory exposure the par t ic le  mass w a s  3 ~ 1 0 ’ ~ ~  gram. For space, 

a good estimate of the mas8 of the  most  numerous pa r t i c l e  may be made by f inding 

the  leveling-off point of the  cumulative flux curve from reference 5, which pre- 

sen ts  t h e  compiled microphone data presently available. 

the most numerous (minimum size) pa r t i c l e  i n  space f l m m  t h i s  data is about 

3 ~ 1 0 ‘ ~ ~  gram, or  one-tenth of the Laboratory pa r t i c l e  mass. Estimates for 

p a r t i c l e  speed i n  space m y  f r o m  30,000 t o  2Q0,000 f e e t  per second. 

late several examples we have taken one a t  34,000 feet per second (four times 

lab speed) and 85,000 feet per second (10 times lab speed). 

we have 

Case 1: 

Let 

Our best figure f o r  

To calcu- 

Using equation (€23) 

and 

v = 4v 
PSP Pr, 

Then 

Case 2: 

Le t  
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APPENDIX c 

DETERMLNATION OF EFFECTIVE OFTICAL PROPBTIES AND 

EQUILIBRIUM -TURE LEvH;S 

A determination of the effect ive opt ica l  properties aSN and em was 

effected through t h e  use of data obtained during nonsteady (heating and cool- 

ing) portions of t h e  space chamber tests.  The following equation was used t o  

describe the energy exchange : 

K(T: - T:) pC d dTd 
+-- P ueTHTd + 

%N = cp cpfiR2 cp d t  

Total  hemispherical emittance was determined from data obtained during times of 

no solar  irradiance (cp = 0) and equation (Cl) i n  t h e  form 

L J 

Normal solar absorptance was determined by using data obtained during periods 

of heating, the previously determined em, and equation (Cl) . 
An equilibrium temperature, ut i l iz i .ng the  aSN and em values obtained 

dlxing nonsteady 

the  form 

port ions of the  

4 
’e q 

tes t ,  can be calculated from equation ( ~ 1 )  i n  

c c3) 



21 

Experimentally, the  equilibrium temperatures w e r e  determined by approaching 

equilibrium conditions from values below and values above the  equilibrium tem-  

perature. This procedure resulted i n  two asymptotic approaches t o  equilibrium 

that bracketed the  ac tua l  equilibrium levels and allowed a ready determination 

of the  equilibrium temperatures within 5O F. 

The calculated and measured data are presented i n  table I. 
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TABLE I . - V A R W I O N  OF OPTICAL PROPWTrrES AND EQUILIBRIUM 

Lab exposme,, joules 

%N 

TEMPEZATURES OF METAL DISKS WITH EXPOSURE 

0 1.25 2-68 5.6 25.4 

0.230 0.447 0.451 0,572 1.02 

Aluminum 

Teq( calc ) 9 OF 

0.061 0.184 0.243 0.282 0.675 

270 311 290 315 317 

I 265 I 295 1 287 I 303 I 305 

304 Stainless  s tee l  

Lab exposure, joules I 0 10.909 I 2.16 I 4.26 I 6.49 

10.-432 10.579 10.793 
~~ 

10.112 10.221 I0.301 10.338 10.366 

OF Te q ( m e a  s 7 
1 328 1 338 I 329 I 330 I 336 

~ ~ ~~ ~~ ~ 

Aluminum (1900 angstroms) on 304 s ta in leds  st .eel  

Lqb exposure, joules I 
I o.11i. 10,428 10.475 10.563 10.702 

10.017 10.175 10.204 I Oa245 10,308 

1 216 I 308 I 313 1 325 I 342 

1 242 1 311 1 320 1 324 I 333 
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Lab exposure joules 

Fa ( for  420' K 

blackbody radiat ion)  

(1 - em)  

0 1.25 2.68 5-6 

1-01 0.80 0.76 0.62 

0.94 0.82 0.76 0.72 

TABLE 11. - COM€ARISON OF -CE Fa WITR 

THE Q U m T Y  (1 - em) 

25.4 

0.305 

0.325 

Lab exposure joules 

pa ( for  420° K 

blackbody rad ia t ion)  

0 - em)  

0 0.909 2.16 4-26 

0.92 0.79 0.71 0.66 

0.89 0.78 0.70 0.66 

Lab exposure, joules 0 1.05 L98 4-51 6-08 

pa ( f o r  420' K 1.02 0.81 0.77 0.67 0.63 
- 

blackbody radiat ion)  

(1 - e m )  0.98 0.82 0.80 0.75 0.69 
c 
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I 1 1 I 
0 2 4 6 8 10 12 14 16 ia 
u 

Wavelength, microns 

(b) Stainless steel 304. 
Figure 1. - Continued, Spectral reflectance Ph-a for polished metal surfaces exposed to approximately 

1 p u l e  of hypervelocity impaction. 
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601 I 
0 2 4 6 8 10 12 14 16 17 

Wavelength, microns 

(c) 1900 Angstrom aluminum on stainless steel substrate. 

Figure 1. -Concluded. Spectral reflectance Ph-a for polished metal surfaces exposed to approxi- 
mately I joule of hypervelocity impaction. 

CD-7886 

Figure 2. - Cutaway drawing of 10- by 6-foot solar space simulator. 
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Figure 3. - Exxposed metal disks in simulated satellite mounting. 

0 AI 1100 
0 ssm 
A 1900 Angstrom AI on  

S S  301 substrate 

Exposure, rL,  joules 
I I I I I I I I 
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L l l l l l l l l l l l i  I I I I 
Exposure, e spl ,  joules 

1 2  3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7  
Exposure, c s p  joules 2 

Exposure, rL,  joules 
I I I I I I I I 

1 2 3 4 5 6 7 8 9 

L l l l l l l l l l l l i  I I I I 
Exposure, e spl ,  joules 

1 2  3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7  
Exposure, c s p  joules 2 

Figure 4. - Degradation of average reflectance of various metal surfaces after exposure to 
impaction by 6-micron Sic particles traveling at 8500 feet per second. (Extra abscissas 
added to indicate exposure necessary for equal damage in space. See appendix B. ) 
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Figure 5. - Equilibrium temperature as function of surface exposure. Incident 
radiation, 1.25 solar constants. 

NASA-CLEVELAND, OHIO E-2745 


